Claude Code skill for dispatching parallel agents
When you have multiple unrelated failures (different test files, different subsystems, different bugs), investigating them sequentially wastes time. Each investigation is independent and can happen in parallel.
Core principle: Dispatch one agent per independent problem domain. Let them work concurrently.
digraph when_to_use {
"Multiple failures?" [shape=diamond];
"Are they independent?" [shape=diamond];
"Single agent investigates all" [shape=box];
"One agent per problem domain" [shape=box];
"Can they work in parallel?" [shape=diamond];
"Sequential agents" [shape=box];
"Parallel dispatch" [shape=box];
"Multiple failures?" -> "Are they independent?" [label="yes"];
"Are they independent?" -> "Single agent investigates all" [label="no - related"];
"Are they independent?" -> "Can they work in parallel?" [label="yes"];
"Can they work in parallel?" -> "Parallel dispatch" [label="yes"];
"Can they work in parallel?" -> "Sequential agents" [label="no - shared state"];
}
Use when:
Don’t use when:
Group failures by what’s broken:
Each domain is independent - fixing tool approval doesn’t affect abort tests.
Each agent gets:
// In Claude Code / AI environment
Task("Fix agent-tool-abort.test.ts failures")
Task("Fix batch-completion-behavior.test.ts failures")
Task("Fix tool-approval-race-conditions.test.ts failures")
// All three run concurrently
When agents return:
Good agent prompts are:
Fix the 3 failing tests in src/agents/agent-tool-abort.test.ts:
1. "should abort tool with partial output capture" - expects 'interrupted at' in message
2. "should handle mixed completed and aborted tools" - fast tool aborted instead of completed
3. "should properly track pendingToolCount" - expects 3 results but gets 0
These are timing/race condition issues. Your task:
1. Read the test file and understand what each test verifies
2. Identify root cause - timing issues or actual bugs?
3. Fix by:
- Replacing arbitrary timeouts with event-based waiting
- Fixing bugs in abort implementation if found
- Adjusting test expectations if testing changed behavior
Do NOT just increase timeouts - find the real issue.
Return: Summary of what you found and what you fixed.
❌ Too broad: “Fix all the tests” - agent gets lost ✅ Specific: “Fix agent-tool-abort.test.ts” - focused scope
❌ No context: “Fix the race condition” - agent doesn’t know where ✅ Context: Paste the error messages and test names
❌ No constraints: Agent might refactor everything ✅ Constraints: “Do NOT change production code” or “Fix tests only”
❌ Vague output: “Fix it” - you don’t know what changed ✅ Specific: “Return summary of root cause and changes”
Related failures: Fixing one might fix others - investigate together first Need full context: Understanding requires seeing entire system Exploratory debugging: You don’t know what’s broken yet Shared state: Agents would interfere (editing same files, using same resources)
Scenario: 6 test failures across 3 files after major refactoring
Failures:
Decision: Independent domains - abort logic separate from batch completion separate from race conditions
Dispatch:
Agent 1 → Fix agent-tool-abort.test.ts
Agent 2 → Fix batch-completion-behavior.test.ts
Agent 3 → Fix tool-approval-race-conditions.test.ts
Results:
Integration: All fixes independent, no conflicts, full suite green
Time saved: 3 problems solved in parallel vs sequentially
After agents return:
From debugging session (2025-10-03):
This skill is from obra’s superpowers - a core skills library for Claude Code. These are community-contributed skills that extend Claude Code’s capabilities.
Original skill: dispatching-parallel-agents
Repository: obra/superpowers
License: MIT
Development Tools
Free (MIT)
AI coding assistant in your terminal
Anthropic's official CLI tool for autonomous coding. Great for full-stack development with AI.
AI pair programmer
Code suggestions right in your IDE. Well-integrated with VS Code and GitHub workflow.
Claude Code skill for executing plans
Use when partner provides a complete implementation plan to execute in controlled batches with review checkpoints - loads plan, reviews critically, executes tasks in batches, reports for review between batches
Discover more AI and automation tools in The Stockyard
Browse All Resources